Thursday, October 15, 2015

Experimental NASA Cubesat Suffers Attitude Control Problem




WASHINGTON — An experimental NASA cubesat launched Oct. 8 has an attitude control problem that is preventing its laser communications payload from being tested, the agency said Oct. 13.

Wednesday, October 7, 2015

These Mysterious Blazing-Fast Ripples Racing Around a Star Defy Explanation

Researchers have spotted strange, fast-traveling ripples speeding around the disk of dust surrounding the young star AU Microscopii. Images from the Hubble Space Telescope and ESA's Very Large Telescope show the ripples' movement over the course of four years. The scale bar at the top of the image stretches the length of Neptune's orbit around the sun.

Scientists were looking for planets forming in the large disk of dust surrounding a young star when they encountered a surprise: fast-moving, wavelike arches racing across the disk like ripples in water.

Friday, September 25, 2015

Revisiting the Veil Nebula


This image shows a small section of the Veil Nebula, as it was observed by the NASA/ESA Hubble Space Telescope. This section of the outer shell of the famous supernova remnant is in a region known as NGC 6960 or -- more colloquially -- the Witch's Broom Nebula. Credit: NASA, ESA, Hubble Heritage Team

Deriving its name from its delicate, draped filamentary structures, the beautiful Veil Nebula is one of the best-known supernova remnants. It formed from the violent death of a star twenty times the mass of the Sun that exploded about 8000 years ago. Located roughly 2100 light-years from Earth in the constellation of Cygnus (The Swan), this brightly coloured cloud of glowing debris spans approximately 110 light-years.

Tuesday, September 15, 2015

ESA's Proba-2 Satellite Sees Three Partial Solar Eclipses



ESA's Earth-orbiting Proba-2 satellite observed three partial solar eclipses on the morning of 13 September 2015 along with an additional passage of the Moon close to the edge of the Sun.

Thursday, September 3, 2015

Space station dark-matter experiment hits a glitch

The Alpha Magnetic Spectrometer has flown on the International Space Station since 2011
The operators of a US$2-billion dark-matter experiment aboard the International Space Station are striving to figure out how to keep three crucial cooling pumps working after the failure of a fourth last year. The glitch raises the most serious concerns yet about whether the Alpha Magnetic Spectrometer (AMS), which probes cosmic rays for signs of dark matter being annihilated in deep space, will last until the space station's planned retirement in 2024. Originally designed for a three-year mission, the AMS is in its fourth year with nine to go.

“We are analysing a whole host of possibilities” for what went wrong with the cooling pump and how to fix it, says Mark Sistilli, the AMS programme manager at NASA's headquarters in Washington DC. Tests have already ruled out one possibility, that radiation fried the broken pump’s electronics.

The AMS continues to gather science data using the three remaining pumps. They are part of a liquid carbon dioxide cooling system that is meant to dissipate heat as the AMS, which is on the outside of the space station, cycles in and out of sunlight during each 90-minute orbit of Earth.

Only one pump is needed at any given time. One failed in February 2014 and at least one of the other three is showing possible signs of trouble.

Since the 8.5-tonne AMS began operating in 2011, it has tracked more than 69 billion cosmic rays flying through its detectors. Its goal is to search for antimatter and dark matter. In 2013, AMS scientists reported measuring numbers and energies of positrons that hinted at, but did not confirm, the existence of dark matter.

The experiment’s scientific power depends on how many particles it tracks, so the longer it runs, the more solid the conclusions. “We’ve had some terrific science so far,” says Sistilli. “We really do want to get to 2024 if we can.”

Extended run

Initially the AMS was supposed to run for only three years. Its original design called for a superconducting magnet that would accomplish the science more quickly, but engineers swapped it with an ordinary magnet months before launch. Tests had shown that the superconducting magnet warmed up more than expected, and the team worried it might consume all of its helium coolant before its three years were up.

Now, cooling systems are again the problem. The pumps, which are in a part of the AMS known as the silicon tracker, are the same ones that were designed to last three years with a superconducting magnet.

The cooling system was built by an international team led by the National Aerospace Laboratory in Amsterdam, the Netherlands. A representative there referred questions to the AMS science group at CERN near Geneva in Switzerland, which is headed by Nobel laureate Samuel Ting of the Massachusetts Institute of Technology in Cambridge.

Ting, who guided the AMS through years of development and setbacks, exhibited little patience for questions about the cooling pumps. “We have four pumps — we only need one,” he says. “We expect to operate for the lifetime of the space station.”

How to fix the problem depends on what it turns out to be. One simple solution could be to upload software that operates the remaining pumps in a different way to allow them to last longer, Sistilli says. Another possibility would be to install a thermal blanket on or near the pumps to control temperatures and reduce their load; other parts of the AMS already have such insulating blankets. A worst-case scenario would involve astronauts doing a spacewalk to replace parts.

It may be six months to a year before the AMS team decides on a solution, Sistilli says.

Meanwhile, a second and smaller dark-matter experiment, the Calorimetric Electron Telescope, arrived at the space station last month. Led by the Japan Aerospace Exploration Agency, it will hunt cosmic rays at energies higher than those in the AMS studies.

Thursday, August 27, 2015

NASA's Next Nuclear-Powered Mars Rover: Building the Beast

This artist's concept shows the sky-crane maneuver during the descent of NASA's Curiosity rover to the Martian surface, which engineers dubbed "seven minutes of terror." The Mars 2020 mission will leverage the design of this landing system and other aspects of Curiosity's Mars Science Laboratory architecture.
MONROVIA, California — NASA's next nuclear-powered Mars rover, slated to launch in 2020, is slowly coming together. And while the Mars 2020 mission is largely based on NASA's Mars rover Curiosity, which is now exploring the Red Planet, there are a variety of distinctions that set it apart. 

Tuesday, August 11, 2015

Salt flat indicates some of the last vestiges of surface water on Mars

A perspective rendering of the martian chloride deposit and surrounding terrain.
Digital terrain mapping and mineralogical analysis of the features surrounding the deposit indicate that this one-time lakebed is no older than 3.6 billion years old.